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ABSTRACT

Let T be a power bounded positive operator in L (X, Z, m) of a probability
space, given by a transition measure P (x, 4). The Cartesian square S is the
operator on L; (X X X, T X X, m X m) induced by the transition measure
Q((x, ), A x B) = P(x, APy, B). T is completely mixing if fu edm =0
implies T"u — 0 weakly (where 0 £ e€ L, with T* e = ¢).

Theorem. If T has no fixed points, then 7 is completely mixing if and only
if S is completely mixing,

1. Definitions and notation

Let (X, 2,m) be a probability space and let T be a positive operator on
L,(X,Z,m), (hence T is bounded). We consider here T power bounded, i.e.
sup|| T*|| = K < oo. For such an operator, Sucheston [7] has proved that X
decomposes into two disjoint sets, the remaining part Y and the disappearing
part Z, such that || T"u|/; - 0 for every u € L;(Z), while there exists a function
e>0a.e. on Y with T*¢ = e (hence liminf | T"u ||, > 0 for 0 < ue L,(Y), u % 0).

A function 0 % ue L(X,%,m) is a fixed point for T if Tu = u. By the decom-
position u =u* —u~ wehave u™ —u~ =Tu=Tu* — Tu~ so Tu* = u™* and
lim T"u* €L, is a fixed point, and the same applies to lim T" 4~ so it is enough
to consider the existence of non-negative fixed points,

In this paper we relate the convergence properties of the powers of T to those
of the powers of its Cartesian square (defined below).

We start by generalizing a result of [5]:
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THeoREM 1.1. If T has no non-zero fixed point, then the weak convergence of
T"u implies ” T"u ”1 -0,

PrOOF. Define v,,=| T"u |.As T"u converges weakly, it is uniformly absolutely
continuous with respect to m, hence {v,} is uniformly absolutely continuous.
+ T'u Zv,s0 0=<v,,( < Tv, Dezfine a functional on L by a Banach limit:

v(f) = LIM {fu,,fdm’.

The uniform absolute continuity of v, implies that v is a finite measure, i.e.
wW(f)= fvfdm for some 0<veL,. For 0 <feL, we obtain

(Tv,f> = (v, T*f) = LIM {Kv,, T*/>} = LIM {KTv,,f}}
2 LIM {<Un+laf>} = <U’f>-

Hence Tv=v, and T"v is increasing. If w =1im T"p, then by the monotone
convergence theorem fw = lim fT"v <K || v I] 1500=<weL, and Tw =w, so by
the nonexistence of fixed points w = 0 and v=0. Thus LIM { {v,dm}= 0. This
implies lim inf H T"u “1 = (. But

|T" u]y<e= | T"*"u|, < Ke so | T" uf,>0.

In this note we assume that T is induced by a transition measure P(x, 4), i.e.
feL,=T*f(x)= [f(y)P(x,dy) ma.e.

For x, ye X and 4, BeX we define Q((x,y), A x B) = P(x, A)P(y, B), which
can be uniquely extended to a transition measure on (X x X, £ x X). We denote
by S the positive operator induced on L,(X x X, Z x £, m x m): the Cartesian
square of T. (Even without transition measures, S = T ® 7, the tensor product
operator in L,(m)® L,(m)).

LemMa 1.1. (a) If h(x,y) = f(x)g(y) (figeL(m)) then S"h(x,y)
= T*f(x)T*"g(y). In any case S*"h(x,y) = [ [h(s,t)P"(x,dt)P"(y,ds).

(b) If w(x,y) = u(x)v(y) (u,ve Ly(m)) then S*w(x,y) = T "u(x)T"v(p).

(c) S is power bounded.

(a) follows from Fubini’s theorem. To prove (b) we use Fubini’s theorem and
the extension theorem. (c¢) follows from (a).

LemMmA 1.2. The remaining partof Sis Y x Y,

ProOF. Let & (x,y) =e(x)e(y) where T*¢=¢ and e>0 a.e. on Y. Then
S*¢=¢ and >0 ae. on YxY so Y xY is in the remaining part, Let
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0 < u(x)e L, have support in Z and take 0 < v(x) € L,. By Lemma 1.1 (b) we have
for wy(x, y) = u(x)v(y) and w,(x,y)=v(x)u(y) that | S"w; | = || T"u|| | T"v| -0
so w; must be supported in the disappearing part of S. As they are supported on
Zx X and X x Z, we have that X x X — Y x Y is in the disappearing part.

2. Complete mixing of the Cartesian square

DErINITION 2.1. Let T be a power bounded positive operator and e > 0 a.e. on
Y with T*e = e. T is completely mixing if | uedm =0 implies T"u — 0 weakly
in L,.

REMARK. By the Hahn-Banach theorem, if T is completely mixing then e is
uniquely defined (up to a multiplicative constant).

THeOREM 2.1. Let T be power bounded having no fixed point. Then T is
completely mixing if and only if its Cartesian square S is completely mixing.

Proor. The case m(Y) =0 being trivial, we assume m(Y)>0. If T*e=e
with e > 0 on Y we denote e'(x, y) = e(x)e(y), and S*e’ = ¢’ by Lemma 1.1.

We first show that if S is completely mixing so is T. The unique S*-invariant
function is e’. Let ue L,(m) satisfy fu edm = 0. Define w(x, y) = u(x)u(y), so
{ {we’ d(m x m) =0 by Fubini’s theorem. For fe L _(m) F(x,y) = f(x)f(y)isin
L (m x m)so by Lemma 1.1 and the complete mixing of S we have

[<T"u,fy|* = f T"u(x)f(x)m(dx) fT”u(y)f (y)m(dy)

= f JP S"w(x, y)F(x, y)d(m x m) = (S"w, F> - 0

Hence (T"u,f) — 0 for every fe L and T is completely mixing.

We assume now that T is completely mixing. Let w(x,y)e L,(m x m) satisfy
f fwe d(m x m)=0and define u(x) = [w(x, y)e(y)m(dy). By Fubini’s theorem
ueL,(m) with [u e dm=0.

For feL,(m x m) define g,(x)= | [f(x,s)P"(y,ds)m(dy). g,eL,(m) by
Fubini’s theorem (we take an everywhere bounded representative of f).

J [ w9 s, ymaymeasy = [usy [ [smsceyymian|meas)
= [wa | [ ] ] steopceanpiaoman)] mas)
= J'u(x) [ f { f f f(t,s)P"(y,ds)m(dy)} P"(x,a‘t)] m(dx)=J~u(x)T*”gn(><)m(dX)-
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As | g,]|w S K| f|. for every n, we have by Theorem 1.1 (the nonexistence

of fixed points implies | 7% ||, - 0):

| [ [seoswse,ymasman) | = [<Tu 8] < | 77K | 5]~
) | [ [w s ymanm) | < | [ [umsese,ymama|

| [ [ Do) = w1 svscs, pimameas) .

We have already shown that the first term tends to zero.
For fixed x define h,(y)= [f(#,y)P"(x,dr) which is measurable in y by
Fubini’s theorem, and we have

T*h, (y) = f B S)P'(y, ds) = f f £08,5)P"Cx, diYP"(, ds)

= S*f(x,y).

For fixed x put v(y) =w(x,y) — u(x) so v,eL,(m) and [v(y)e(y)m(dy)
= [w(x, y)e(y)m(dy) — u(x) f{e(y)m(dy) which is zero if we assume Je(y)m(dy)
=1 (this is done as a normalization at the beginning).

Now h, e L (m) with | b, |, S K[ f|, for almost every x.

| [ Dot = w1 s, m@n)| = | [ o)1 b 3mean)|

S [ 7ol s [ ] K Toc s | £ =0

by Theorem 1.1, as [v.edm = 0.
If we assume that w(x, y) is bounded, then we may use the bounded convergence
theorem to obtain

| ] fowten - un sy masmas) | 5 [ | o b |man o

Hence by (*) we have proven that if w(x, y)is bounded with | [we’d(m x m)=0
then " w — 0 weakly. If w is not bounded, we can find a sequence w; of bounded
functions, with | {w; e’ d(m x m) = 0, converging to w in L,-norm, so standard
arguments conclude the proof.

COROLLARY 2.1, Let T be completely mixing having no fixed point. Then for
every w(x,y)e L,(m x m) with
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f J w(x, y)e(x)e(y)m(dx)m(dy) = 0 we have | S"w|, — 0.

Proor. As Theorem 2.1 implies S"w — 0 weakly in L,, it is enough to show that
S has no fixed point, so Theorem 1.1 applies to S.

Suppose 0 < v(x,y) is a fixed point for S. Define u(x)= [uv(x,y)e(y)m(dy).
For geL_ (m) define f(x,y) = g(x)e(y) and by Lemma 1.1 S*f(x,y)
= T*g(x)T*e(y) = T*g(x)e(y). By Fubini’s theorem u(x)e L;(m), and

(Tu,g) = f u(x)T*g(x)m(dx) = f f o(x, YN T* gxym(dx)m(dy)

- f f o(x, ) SH(x, Y)d(m x m) = (Sv,f> = (o,

- f f o5, Y)g(eCImdx)m(dy) = (u, .

We obtain thus Tu =usou =0a.e.s00= [u(x)e(x)m(dx) = | fve'd(m x m)
so v(x,y)=0a.e. on Y X Y. As an invariant function cannot be supported in the
disappearing part, Lemma 1.2 implies that v(x, y) = 0 a.e. and S has no fixed points.

We next note that when T has a fixed point uye Ly with u, > 0 a.e. it is still
true that T is completely mixing if and only if S is completely mixing. This result
is known for contractions, by modification of the proofin [2, p. 39].

LemMA 2.1. Let T be power bounded and assume u, > 0 a.e. is a fixed point
in L,. Then for every ueL, the averages (1/N)ZN_ T"u converge in L, (to a
fixed point). Furthermore, if T is ergodic (i.e. there is a unique e 2 0 in L, with
fe uy dm =1and T*e=e), then lim(1/N) X\_,T"u = ( fuedm)u, in L;.

We give the well-known arguments of the proof.

As Li(uqdm) is isomorphic to L,(m) (via the Radon-Nikodym theorem) we may
and shall assume u, = 1. Then T is power bounded in L,(m) and is also a con-
traction of L, hence [1, p. 526] a power bounded operator in L,, to which the
mean ergodic theorem can be applied [6, p. 399], so approximations in E, yield
the desired convergence. If T is ergodic then v =u — ( [uedm)u, is orthogonal
to all T*-invariant functions so |[(1/N)Z T, - 0.

THEOREM 2.2. Let T be power bounded having a fixed point uge L, with
uy > Oa.e. Then T is completely mixing if and only if its Cartesian square S
is completely mixing.
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Proor. If S is completely mixing, so is T by the beginning of the proof of
Theorem 2.1,

If T is completely mixing, we have (using Lemma 2.1) that T"u—( {uedm)u,
weakly, for every ue L,(m), and the arguments in [2, p. 39] can be modified to
yield our result,

3. Application to Markov operators

If T is a positive operator on L, with T*1 =1 we call it a Markov operator,
Theorem 2.1 can be applied to such operators and we can obtain that T® T
® T--- ® T is completely mixing. This holds even if T is conservative and ergodic
while T ® T is not conservative. Kakutanij and Parry [3] have shown that T weak
mixing (defined as T ® T ergodic) does not imply that T ® T is weakly mixing
in the absence of a finite invariant measure,

A discussion of the intuitive interpretation of complete mixing is givenin [4, §2].

For a conservative Markov operator T we have that if T is completely mixing,
s0is T® T® - ® T, because either theorem 2.1 or theorem 2.2 can be applied
as T must be ergodic.
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