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ABSTRACT 

Let Tbe a power bounded positive operator in LI(X, ~, m) of a probability 
space, given by a transition measure P (x, A). The Cartesian square S is the 
operator on L 1 (X • X, ~.. • Y-, in x m) induced by the transition measure 
Q ( (x, y), A • B) = P(x, A)P(y, B). T is completely mixing if ~. u e d m =  0 
implies Tnu -o 0 weakly (where 0 =< e ~ Loo with T* e ~ e). 

Theorem. If T has no fixed points, then T is completely mixing if and only 
if S is completely mixing. 

1. Definitions and notation 

Let  (X,  E , m ) b e  a probabi l i ty  space and  let T be a posit ive opera to r  on 

Lt (X ,E ,m) ,  (hence T is bounded) .  We  consider  here T power bounded, i.e. 

sup tl T ~  = K < oo. F o r  such an  opera tor ,  Suches ton  [7] has p roved  tha t  X 

decomposes  in to  two disjoint  sets, the remaining part Y and the disappearing 

part Z, such tha t  ~ Tnul[1 -o0 for  every u e L l ( Z ) ,  while there  exists a funct ion 

e > 0 a.e. on Y with T*e = e (hence l im in f  [] T'u []l > 0 for  0 < u e LI(Y) ,  u ~- 0). 

A funct ion 0 ~- u eLI(X,Y~,m) is af ixed point for  T i f  Tu = u. By the decom-  

p o s i t i o n u = u  + - u -  we h a v e u  + - u - = T u = T u  + - T u -  so Tu + > u  + and  

lira T~u + e L i  is a fixed point ,  and  the  same appl ies  to l im T n u - ,  so it is enough 

to consider the existence o f  non-negat ive  fixed points.  

In  this pape r  we relate the convergence proper t ies  o f  the powers  of  T to those  

o f  the powers  o f  its Car tes ian  square (defined below).  

We start  by general izing a result  o f  [5-1 : 
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THEOREM 1.1. I f  T has no non-zero fixed point, then the weak convergence of 

Tnu implies [] Tnu Ill-" 0 

PROOF. Define v~ = [ Tnu [. As Tnu converges weakly, it is uniformly absolutely 
continuous with respect to m, hence (vn} is uniformly absolutely continuous. 
+_ T~u <- vn so 0 <= Vn+l <= Tv~. D~fine a functional on Loo by a Banach limit: 

The uniform absolute continuity of  v, implies that v is a finite measure, i.e. 

v( f )  = S v f d m  for some O< veL1. For O < f e L ~  we obtain 

( r v , f )  = (v ,  T ' f )  = L I M  {(vn, T ' f ) }  ; L I M  {(Try,f)} 

LIM {(v~+l,f)} = ( v , f ) .  

Hence Tv >= v, and T"v is increasing. If  w-- l i ra  T%, then by the monotone 

convergence theorem J'w = lira j" T'v <_ K [Iv []1 so 0 __< w ~ L 1 and Tw = w, so by 

the nonexistence of fixed points w - 0  and v= 0. Thus LIM { fv,  dm}= O. This 

implies lim inf  ][ T"u []1 = 0. But 

II T~ II, II Tm "knu I/1 =< so II T" Ill - '  0. 

In this note we assume that T is induced by a transition measure P(x,A), i.e. 

f ~  Loo ~ T*f(x) = ff(y)P(x,  dy) ma.e. 

For x, y ~ X and A, B ~ E we define Q((x, y), A x B) = P(x, A)P(y, B), which 

can be uniquely extended to a transition measure on (X x X, E x E). We denote 

by S the positive operator induced on LI(X x X, E x E, m x m): the Cartesian 

square of T. (Even without transition measures, S = T | T, the tensor product 

operator in Ll(m) | Ll(m)). 

LEMMA 1.1. (a) I f  h(x,y) = f(x)g(y) (f,g~Loo(m)) then S'h(x,y)  

= T*nf(x)T*~g(y). In any case S*~h(x, y) = f fh(s, t)P~(x, dt)P~(y, ds). 

(b) / f  w(x, y) = u(x)v(y) (u, v e Ll(m)) then S~w(x, y) = Tnu(x)T%(y). 

(c) S is power bounded. 

(a) follows from Fubini's theorem. To prove (b) we use Fubini's theorem and 

the extension theorem. (c) follows from (a). 

LEMMA 1.2. The remaining part of S is Y x Y. 

PROOF. Let ~ ( x , y ) =  e(x)e(y) where T*e = e and e > 0 a.e. on Y. Then 

S * ~ = ~  and ~ > 0  a.e. on Y x  Y so Y x  Y is in the remaining part. Let 
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0 < u(x) ~ L1 have support in Z and take 0 < v(x) E L1. By Lemma 1.1 (b) we have 

for wl(x, y) = u(x)v(y) and w2(x, y)=v(x)u(y) that II Sew, LI = II Ten II II Tev IL-  0 

so w i must be supported in the disappearing part of S. As they are supported on 

Z x X and X • Z, we have that X x X -  Y x Y is in the disappearing part. 

2. Complete mixing of the Cartesian square 

DEFINITION 2.1. Let T be a power bounded positive operator and e > 0 a.e. on 

Y with T*e = e. T is completely mixing if [. uedm = 0 implies Teu--. 0 weakly 

in L1. 

REMARK. By the Hahn-Banach theorem, if T is completely mixing then e is 

uniquely defined (up to a multiplicative constant). 

THEOREM 2.1. Let T be power bounded having no fixed point. Then T is 
completely mixing if and only if its Cartesian square S is completely mixing. 

PROOF. The case re(Y)= 0 being trivial, we assume re(Y)> 0. If  T*e = e 
with e > 0 on Y we denote e'(x,y) = e(x)e(y), and S*e' = e' by Lemma 1.1. 

We first show that if  S is completely mixing so is T. The unique S*-invariant 

function is e'. Let U~Ll(m) satisfy [.u edm = 0. Define w(x,y)= u(x)u(y), so 

[. [we' d(m x m) -= 0 by Fubini's theorem. F o r f ~  Lo~(m) F(x, y) =f(x)f(y) is in 

Loo(m x m) so by Lemma 1.1 and the complete mixing of S we have 

I (T'u,f)l" = f Teu(x)f(x)m(dx) f r"u(y)f(y)m(dy) 

Hence (reu, f )-~ 0 for every f s  Loo and T is completely mixing. 

We assume now that T is completely mixing. Let w(x,y)e Ll(m x m) satisfy 

[. [.w e' d(m x m) = 0 and define u(x) = [.w(x, y)e(y)m(dy). By Fubini's theorem 

ueLl(m) with [.u e dm=O. 
For f~L~o(m x m) define ge(x) = [. [.f(x,s)P~(y,ds)m(dy). geeL| by 

Fubini's theorem (we take an everywhere bounded representative o f f ) .  

f f u(x) SW(x,y)m(dy)m(dx)= f u(x) [fs*ef(x,y)m(dy)lm(dx) 

= f u ( x ) I f  f f f(t,s)P'(x, dt)P~(y, ds)m(dy)] m(dx) 

- - f , , ,x~  [ f ( f ; f,t,s)Pn(y, ds)m(dy)}pn(x, dt)] m(dx)=fu(x)r*ngn(x)m(dx).  
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As 1[ g, [] ~o < K l[ f 1[ ~ for every n, we have by Theorem 1.1 (the nonexistence 

of  fixed points implies I1T"u II1 "-* 13): 

j f I u(x) S*"f(x, y)m(dy)m(dx) = [ ( T"u, gn> ] < [I T"u I[ 11 liT I1 ~ -~ 0 
,0 

(*) f fw(x,y)S*"f(x,y)m(dx)m(dy) [<= [ f fu(x)S*'f(x,y)m(dx)m(dy) 

We have already shown that the first term tends to zero. 

For  fixed x define h .x(y)= Sf(t,y)P"(x,dt) which is measurable in y by 

Fubini's theorem, and we have 

T*"h.x(y)= f h.x(s)pn(y, ds)= f f y(t,s)e"(x,d,)e"(y, ds) 

= S*"f(x,y). 

For fixed x put Vx(y)= w(x,y)-u(x) so v~Lx(m) and fVx(y)e(y)m(dy) 
= fw(x,y)e(y)m(dy) - u(x) fe(y)m(dy) which is zero if  we assume Se(y)m(dy) 
= 1 (this is done as a normalization at the beginning). 

Now h,xeL~(m)with IIh,~ll~<K[lfi[~ for almost every x. 

If [w(x,y)-u(x)]S*"f(x,y)m(dy)l  = I fvx(y)r*%~(y)m(dy)l 
II r%~ I1~ II h.x 11~ = K II Tnv~ [1' I1 f I1~--' 0 

by Theorem 1.1, as fv~,edm = O. 
I f  we assume that w(x, y) is bounded, then we may use the bounded convergence 

theorem to obtain 

I f  f [w(x,y)- u(x)]S*"f(x,y)m(dy)m(dx) ] <= f [ <vx, T*"hnx> ]m(dy)~O. 

Hence by (*) we have proven that if w(x, y) is bounded with S ~ w e' d(m x m) = 0 
then S" w ~ 0 weakly. If  w is not bounded, we can find a sequence wj of bounded 

functions, with j" fw~ e' d(m x m) = 0, converging to w in Lt-norm, so standard 

arguments conclude the proof. 

COROLLARY 2.1. Let T be completely mixing having no fixed point. Then for 
every w(x, y) ~ Ll(m x m) with 
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f ~ w(x,y)e(x)e(y)m(dx)m(dy)=Owe have II S"wlll~O" 

PROOF. As Theorem 2.1 implies S"w ~ 0 weakly in Li, it is enough to show that 

S has no fixed point, so Theorem 1.1 applies to S. 

Suppose 0 <= v(x,y) is a fixed point for S. Define u(x)= ~v(x,y)e(y)m(dy). 

For geL|  define f ( x , y ) =  g(x)e(y) and by Lemma 1.1 S*f(x,y) 

= r*g(x)r*e(y)= r*g(x)e(y). By Fubini's theorem u(x)e Li(m), and 

(Tu,  g>-= f u(x)r*g(x)m(dx)= f f v(x,y)e(y)T*g(x)m(dx)m(dy) 

= f f  v(x,y)S*f(x,y)d(mxm)=(Sv,f)=(v,f> 

- -  f f v(x,y)g(x)e(y)m(dx)m(dy)= <u,g>. 

We obtainthus Tu = u so u = 0 a,e. so 0 = ~u(x)e(x)m(dx) = ~ ~ve'd(m x m) 

so v(x, y) = 0 a.e. on Y x Y. As an invariant function cannot be supported in the 

disappearing part, Lemma 1.2 implies that v(x, y) = 0 a.e. and S has no fixed points. 

We next note that when T has a fixed point Uo e L1 with u0 > 0 a.e. it is still 

true that T is completely mixing if and only if S is completely mixing. This result 

is known for contractions, by modification of the proof in [2, p. 39]. 

LEMMA 2.1. Let T be power bounded and assume uo > 0 a.e. is a fixed point 

in Li. Then for every u eL1 the averages (1 [ N ) ~ = t T " u  converge in L1 (to a 

fixed point). Furthermore, if  T is ergodic (i.e. there is a unique e > 0 in L~ with 

= ~,,=tT u =(~uedm)u o in L1. ~e uo dm l a n d  T*e=e) ,  then l im(1/N)  s , 

We give the well-known arguments of the proof. 

As Ll(uodm) is isomorphic to Ll(m) (via the Radon-Nikodym theorem) we may 

and shall assume Uo = 1. Then T is power bounded in Ll(m) and is also a con- 

traction of L~, hence [1, p. 526] a power bounded operator in L2, to which the 

mean ergodic theorem can be applied [6, p. 399], so approximations in L1 yield 

the desired convergence. I f  T is ergodic then v = u - (  ~u edm)uo is orthogonal 

to all T*-invariant functions so II(1/N)ZT"vIli ~ 0 .  

THEOREM 2.2. Let T be power bounded having a fixed point Uo ~ L t  with 

Uo > 0a.e. Then T is completely mixing if and only if  its Cartesian square S 

is completely mixing. 
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PROOF. If S is completely mixing, so is T by the beginning of the proof of 

Theorem 2.1. 

If  T is completely mixing, we have (using Lemma 2.1) that T"u~( fu edm)uo 

weakly, for every u ~ Ll(m), and the arguments in [-2, p. 39] can be modified to 

yield our result. 

3. Application to Markov operators 

If T is a positive operator on L1 with T*I = 1 we call it a Markov operator. 

Theorem 2.1 can be applied to such operators and we can obtain that T | T 

| T.. .  | T is completely mixing. This holds even if T is conservative and ergodic 

while T @ T is not conservative. Kakutani and Parry 1-3] have shown that T weak 

mixing (defined as T | T ergodic) does not imply that T | T is weakly mixing 

in the absence of a finite invariant measure. 

A discussion of the intuitive interpretation of complete mixing is given in [-4, w 

For a conservative Markov operator T we have that if T is completely mixing, 

so is T @ T | ... | T, because either theorem 2.1 or theorem 2.2 can be applied 

as T must be ergodic. 
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