

MIXING OF CARTESIAN SQUARES OF POSITIVE OPERATORS

BY

MICHAEL LIN*

ABSTRACT

Let T be a power bounded positive operator in $L_1(X, \Sigma, m)$ of a probability space, given by a transition measure $P(x, A)$. The Cartesian square S is the operator on $L_1(X \times X, \Sigma \times \Sigma, m \times m)$ induced by the transition measure $Q((x, y), A \times B) = P(x, A)P(y, B)$. T is *completely mixing* if $\int u e dm = 0$ implies $T^n u \rightarrow 0$ weakly (where $0 \leq e \in L_\infty$ with $T^* e = e$).

Theorem. If T has no fixed points, then T is completely mixing if and only if S is completely mixing.

1. Definitions and notation

Let (X, Σ, m) be a probability space and let T be a positive operator on $L_1(X, \Sigma, m)$, (hence T is bounded). We consider here T *power bounded*, i.e. $\sup \|T^n\| = K < \infty$. For such an operator, Sucheston [7] has proved that X decomposes into two disjoint sets, the *remaining part* Y and the *disappearing part* Z , such that $\|T^n u\|_1 \rightarrow 0$ for every $u \in L_1(Z)$, while there exists a function $e > 0$ a.e. on Y with $T^* e = e$ (hence $\liminf \|T^n u\|_1 > 0$ for $0 \leq u \in L_1(Y)$, $u \not\equiv 0$).

A function $0 \not\equiv u \in L_1(X, \Sigma, m)$ is a *fixed point* for T if $Tu = u$. By the decomposition $u = u^+ - u^-$ we have $u^+ - u^- = Tu = Tu^+ - Tu^-$ so $Tu^+ \geq u^+$ and $\lim T^n u^+ \in L_1$ is a fixed point, and the same applies to $\lim T^n u^-$, so it is enough to consider the existence of non-negative fixed points.

In this paper we relate the convergence properties of the powers of T to those of the powers of its Cartesian square (defined below).

We start by generalizing a result of [5]:

* Part of this research was done at The Hebrew University of Jerusalem.

THEOREM 1.1. *If T has no non-zero fixed point, then the weak convergence of $T^n u$ implies $\|T^n u\|_1 \rightarrow 0$.*

PROOF. Define $v_n = |T^n u|$. As $T^n u$ converges weakly, it is uniformly absolutely continuous with respect to m , hence $\{v_n\}$ is uniformly absolutely continuous. $\pm T^n u \leq v_n$ so $0 \leq v_{n+1} \leq T v_n$. Define a functional on L_∞ by a Banach limit:

$$v(f) = \text{LIM} \left\{ \int v_n f dm \right\}.$$

The uniform absolute continuity of v_n implies that v is a finite measure, i.e. $v(f) = \int v f dm$ for some $0 \leq v \in L_1$. For $0 \leq f \in L_\infty$ we obtain

$$\begin{aligned} \langle T v, f \rangle &= \langle v, T^* f \rangle = \text{LIM} \{ \langle v_n, T^* f \rangle \} = \text{LIM} \{ \langle T v_n, f \rangle \} \\ &\geq \text{LIM} \{ \langle v_{n+1}, f \rangle \} = \langle v, f \rangle. \end{aligned}$$

Hence $T v \geq v$, and $T^n v$ is increasing. If $w = \lim T^n v$, then by the monotone convergence theorem $\int w = \lim \int T^n v \leq K \|v\|_1$ so $0 \leq w \in L_1$ and $T w = w$, so by the nonexistence of fixed points $w \equiv 0$ and $v = 0$. Thus $\text{LIM} \{ \int v_n dm \} = 0$. This implies $\liminf \|T^n u\|_1 = 0$. But

$$\|T^m u\|_1 < \varepsilon \Rightarrow \|T^{m+n} u\|_1 \leq K \varepsilon \text{ so } \|T^n u\|_1 \rightarrow 0.$$

In this note we assume that T is induced by a transition measure $P(x, A)$, i.e. $f \in L_\infty \Rightarrow T^* f(x) = \int f(y) P(x, dy)$ ma.e.

For $x, y \in X$ and $A, B \in \Sigma$ we define $Q((x, y), A \times B) = P(x, A)P(y, B)$, which can be uniquely extended to a transition measure on $(X \times X, \Sigma \times \Sigma)$. We denote by S the positive operator induced on $L_1(X \times X, \Sigma \times \Sigma, m \times m)$: the *Cartesian square* of T . (Even without transition measures, $S = T \otimes T$, the tensor product operator in $L_1(m) \otimes L_1(m)$).

LEMMA 1.1. (a) *If $h(x, y) = f(x)g(y)$ ($f, g \in L_\infty(m)$) then $S^n h(x, y) = T^* f(x) T^* g(y)$. In any case $S^{*n} h(x, y) = \int \int h(s, t) P^n(x, dt) P^n(y, ds)$.*

(b) *If $w(x, y) = u(x)v(y)$ ($u, v \in L_1(m)$) then $S^n w(x, y) = T^n u(x) T^n v(y)$.*

(c) *S is power bounded.*

(a) follows from Fubini's theorem. To prove (b) we use Fubini's theorem and the extension theorem. (c) follows from (a).

LEMMA 1.2. *The remaining part of S is $Y \times Y$.*

PROOF. Let $\tilde{e}(x, y) = e(x)e(y)$ where $T^* e = e$ and $e > 0$ a.e. on Y . Then $S^* \tilde{e} = \tilde{e}$ and $\tilde{e} > 0$ a.e. on $Y \times Y$ so $Y \times Y$ is in the remaining part. Let

$0 \leq u(x) \in L_1$ have support in Z and take $0 < v(x) \in L_1$. By Lemma 1.1 (b) we have for $w_1(x, y) = u(x)v(y)$ and $w_2(x, y) = v(x)u(y)$ that $\|S^n w_i\| = \|T^n u\| \|T^n v\| \rightarrow 0$ so w_i must be supported in the disappearing part of S . As they are supported on $Z \times X$ and $X \times Z$, we have that $X \times X - Y \times Y$ is in the disappearing part.

2. Complete mixing of the Cartesian square

DEFINITION 2.1. Let T be a power bounded positive operator and $e > 0$ a.e. on Y with $T^*e = e$. T is *completely mixing* if $\int u e dm = 0$ implies $T^n u \rightarrow 0$ weakly in L_1 .

REMARK. By the Hahn-Banach theorem, if T is completely mixing then e is uniquely defined (up to a multiplicative constant).

THEOREM 2.1. *Let T be power bounded having no fixed point. Then T is completely mixing if and only if its Cartesian square S is completely mixing.*

PROOF. The case $m(Y) = 0$ being trivial, we assume $m(Y) > 0$. If $T^*e = e$ with $e > 0$ on Y we denote $e'(x, y) = e(x)e(y)$, and $S^*e' = e'$ by Lemma 1.1.

We first show that if S is completely mixing so is T . The unique S^* -invariant function is e' . Let $u \in L_1(m)$ satisfy $\int u e dm = 0$. Define $w(x, y) = u(x)u(y)$, so $\int \int w e' d(m \times m) = 0$ by Fubini's theorem. For $f \in L_\infty(m)$ $F(x, y) = f(x)f(y)$ is in $L_\infty(m \times m)$ so by Lemma 1.1 and the complete mixing of S we have

$$\begin{aligned} |\langle T^n u, f \rangle|^2 &= \int T^n u(x) f(x) m(dx) \int T^n u(y) f(y) m(dy) \\ &= \int \int S^n w(x, y) F(x, y) d(m \times m) = \langle S^n w, F \rangle \rightarrow 0 \end{aligned}$$

Hence $\langle T^n u, f \rangle \rightarrow 0$ for every $f \in L_\infty$ and T is completely mixing.

We assume now that T is completely mixing. Let $w(x, y) \in L_1(m \times m)$ satisfy $\int \int w e' d(m \times m) = 0$ and define $u(x) = \int w(x, y) e(y) m(dy)$. By Fubini's theorem $u \in L_1(m)$ with $\int u e dm = 0$.

For $f \in L_\infty(m \times m)$ define $g_n(x) = \int \int f(x, s) P^n(y, ds) m(dy)$. $g_n \in L_\infty(m)$ by Fubini's theorem (we take an everywhere bounded representative of f).

$$\begin{aligned} \int \int u(x) S^* f(x, y) m(dy) m(dx) &= \int u(x) \left[\int S^* f(x, y) m(dy) \right] m(dx) \\ &= \int u(x) \left[\int \int \int f(t, s) P^n(x, dt) P^n(y, ds) m(dy) \right] m(dx) \\ &= \int u(x) \left[\int \left\{ \int \int f(t, s) P^n(y, ds) m(dy) \right\} P^n(x, dt) \right] m(dx) = \int u(x) T^* g_n(x) m(dx). \end{aligned}$$

As $\|g_n\|_\infty \leq K \|f\|_\infty$ for every n , we have by Theorem 1.1 (the nonexistence of fixed points implies $\|T^n u\|_1 \rightarrow 0$):

$$\left| \int \int u(x) S^{*n} f(x, y) m(dy) m(dx) \right| = |\langle T^n u, g_n \rangle| \leq \|T^n u\|_1 K \|f\|_\infty \rightarrow 0.$$

$$(*) \quad \left| \int \int w(x, y) S^{*n} f(x, y) m(dx) m(dy) \right| \leq \left| \int \int u(x) S^{*n} f(x, y) m(dx) m(dy) \right| \\ + \left| \int \int [w(x, y) - u(x)] S^{*n} f(x, y) m(dx) m(dy) \right|.$$

We have already shown that the first term tends to zero.

For fixed x define $h_{nx}(y) = \int f(t, y) P^n(x, dt)$ which is measurable in y by Fubini's theorem, and we have

$$T^{*n} h_{nx}(y) = \int h_{nx}(s) P^n(y, ds) = \int \int f(t, s) P^n(x, dt) P^n(y, ds) \\ = S^{*n} f(x, y).$$

For fixed x put $v_x(y) = w(x, y) - u(x)$ so $v_x \in L_1(m)$ and $\int v_x(y) e(y) m(dy) = \int w(x, y) e(y) m(dy) - u(x) \int e(y) m(dy)$ which is zero if we assume $\int e(y) m(dy) = 1$ (this is done as a normalization at the beginning).

Now $h_{nx} \in L_\infty(m)$ with $\|h_{nx}\|_\infty \leq K \|f\|_\infty$ for almost every x .

$$\left| \int [w(x, y) - u(x)] S^{*n} f(x, y) m(dy) \right| = \left| \int v_x(y) T^{*n} h_{nx}(y) m(dy) \right| \\ \leq \|T^n v_x\|_1 \|h_{nx}\|_\infty \leq K \|T^n v_x\|_1 \|f\|_\infty \rightarrow 0$$

by Theorem 1.1, as $\int v_x e dm = 0$.

If we assume that $w(x, y)$ is bounded, then we may use the bounded convergence theorem to obtain

$$\left| \int \int [w(x, y) - u(x)] S^{*n} f(x, y) m(dy) m(dx) \right| \leq \int \left| \langle v_x, T^{*n} h_{nx} \rangle \right| m(dy) \rightarrow 0.$$

Hence by $(*)$ we have proven that if $w(x, y)$ is bounded with $\int \int w e' d(m \times m) = 0$ then $S^n w \rightarrow 0$ weakly. If w is not bounded, we can find a sequence w_j of bounded functions, with $\int \int w_j e' d(m \times m) = 0$, converging to w in L_1 -norm, so standard arguments conclude the proof.

COROLLARY 2.1. *Let T be completely mixing having no fixed point. Then for every $w(x, y) \in L_1(m \times m)$ with*

$$\int \int w(x, y)e(x)e(y)m(dx)m(dy) = 0 \text{ we have } \|S^n w\|_1 \rightarrow 0.$$

PROOF. As Theorem 2.1 implies $S^n w \rightarrow 0$ weakly in L_1 , it is enough to show that S has no fixed point, so Theorem 1.1 applies to S .

Suppose $0 \leq v(x, y)$ is a fixed point for S . Define $u(x) = \int v(x, y)e(y)m(dy)$. For $g \in L_\infty(m)$ define $f(x, y) = g(x)e(y)$ and by Lemma 1.1 $S^*f(x, y) = T^*g(x)T^*e(y) = T^*g(x)e(y)$. By Fubini's theorem $u(x) \in L_1(m)$, and

$$\begin{aligned} \langle Tu, g \rangle &= \int u(x)T^*g(x)m(dx) = \int \int v(x, y)e(y)T^*g(x)m(dx)m(dy) \\ &= \int \int v(x, y)S^*f(x, y)d(m \times m) = \langle Sv, f \rangle = \langle v, f \rangle \\ &= \int \int v(x, y)g(x)e(y)m(dx)m(dy) = \langle u, g \rangle. \end{aligned}$$

We obtain thus $Tu = u$ so $u = 0$ a.e. so $0 = \int u(x)e(x)m(dx) = \int \int v e' d(m \times m)$ so $v(x, y) = 0$ a.e. on $Y \times Y$. As an invariant function cannot be supported in the disappearing part, Lemma 1.2 implies that $v(x, y) = 0$ a.e. and S has no fixed points.

We next note that when T has a fixed point $u_0 \in L_1$ with $u_0 > 0$ a.e. it is still true that T is completely mixing if and only if S is completely mixing. This result is known for contractions, by modification of the proof in [2, p. 39].

LEMMA 2.1. *Let T be power bounded and assume $u_0 > 0$ a.e. is a fixed point in L_1 . Then for every $u \in L_1$ the averages $(1/N)\sum_{n=1}^N T^n u$ converge in L_1 (to a fixed point). Furthermore, if T is ergodic (i.e. there is a unique $e \geq 0$ in L_∞ with $\int e u_0 dm = 1$ and $T^*e = e$), then $\lim(1/N)\sum_{n=1}^N T^n u = (\int u e dm)u_0$ in L_1 .*

We give the well-known arguments of the proof.

As $L_1(u_0 dm)$ is isomorphic to $L_1(m)$ (via the Radon-Nikodym theorem) we may and shall assume $u_0 = 1$. Then T is power bounded in $L_1(m)$ and is also a contraction of L_∞ , hence [1, p. 526] a power bounded operator in L_2 , to which the mean ergodic theorem can be applied [6, p. 399], so approximations in L_1 yield the desired convergence. If T is ergodic then $v = u - (\int u e dm)u_0$ is orthogonal to all T^* -invariant functions so $\|(1/N)\sum T^n v\|_1 \rightarrow 0$.

THEOREM 2.2. *Let T be power bounded having a fixed point $u_0 \in L_1$ with $u_0 > 0$ a.e. Then T is completely mixing if and only if its Cartesian square S is completely mixing.*

PROOF. If S is completely mixing, so is T by the beginning of the proof of Theorem 2.1.

If T is completely mixing, we have (using Lemma 2.1) that $T^n u \rightarrow (\int u e dm)u_0$ weakly, for every $u \in L_1(m)$, and the arguments in [2, p. 39] can be modified to yield our result.

3. Application to Markov operators

If T is a positive operator on L_1 with $T^*1 = 1$ we call it a *Markov operator*. Theorem 2.1 can be applied to such operators and we can obtain that $T \otimes T \otimes T \cdots \otimes T$ is completely mixing. This holds even if T is conservative and ergodic while $T \otimes T$ is not conservative. Kakutani and Parry [3] have shown that T weak mixing (defined as $T \otimes T$ ergodic) does not imply that $T \otimes T$ is weakly mixing in the absence of a finite invariant measure.

A discussion of the intuitive interpretation of complete mixing is given in [4, §2].

For a conservative Markov operator T we have that if T is completely mixing, so is $T \otimes T \otimes \cdots \otimes T$, because either theorem 2.1 or theorem 2.2 can be applied as T must be ergodic.

ACKNOWLEDGMENT

I am grateful to Professor Krengel for sending me a preprint of [4], and to Professor Sucheston for some valuable conversations.

REFERENCES

1. N. Dunford and J. Schwartz, *Linear Operators*, Part I, Interscience, New York, 1958.
2. P. R. Halmos, *Lectures on Ergodic theory*, The mathematical society of Japan, 1956.
3. S. Kakutani and W. Parry, *Infinite measure preserving transformations with "mixing"*, Bull. Amer. Math. Soc. **69** (1963), 752–756.
4. U. Krengel, *Weakly wandering vectors and weakly independent partitions*, to appear.
5. U. Krengel and L. Sucheston, *On Mixing in infinite measure spaces*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, **13** (1969) 150–164.
6. F. Riesz and B. Sz. Nagy, *Leçons d'analyse fonctionnelle*, Gauthier-Villars, Paris, 1968.
7. L. Sucheston, *On the ergodic theorem for positive operators I*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, **8** (1967), 1–11.